Dynamic Macroeconomics
Dynamic Macroeconomics

George Alogoskoufis

The MIT Press
Cambridge, Massachusetts
London, England
To Spyros, Athinais, and Danae
Contents

List of Figures and Table xxii
Preface xxvii

1 Introduction 1
 1.1 The Nature and Evolution of Macroeconomics 2
 1.1.1 Pre-Keynesian Macroeconomics 2
 1.1.2 Classical and Keynesian Macroeconomics 4
 1.1.3 Microeconomic Foundations of Macroeconomics 6
 1.1.4 Deterministic and Stochastic Dynamic General Equilibrium Models 7
 1.2 Key Facts about Long-Run Economic Growth 11
 1.2.1 Cross-Country Differences in Per Capita Output and Income 11
 1.2.2 Evolution of Per Capita Output and Income over Time 13
 1.2.3 Economic Growth and Convergence since 1820 14
 1.3 Key Facts about Aggregate Fluctuations 18
 1.3.1 Frequency, Severity, and Duration of Recessions 18
 1.3.2 Unemployment in Booms and Recessions 20
 1.3.3 Trends and Fluctuations in the Price Level and Inflation 22
 1.3.4 Monetary Policy and Government Debt 26
 1.3.5 Monetary Policy and Inflation in the Postwar Period 31
 1.4 Conclusion 32

2 The Intertemporal Approach 33
 2.1 Models, Variables, and Functions 34
 2.2 General Equilibrium in a One-Period Competitive Model 36
 2.2.1 Endowments, Preferences, and the Optimal Behavior of Households 36
 2.2.2 The Production Function and the Profit-Maximizing Behavior of Firms 38
 2.2.3 The Cobb-Douglas Production Function 40
 2.2.4 General Equilibrium in the One-Period Model 40
 2.3 Savings and Investment in a Two-Period Competitive Model 42
 2.3.1 The Representative Household in a Two-Period Model 42
 2.3.2 Implications of the Euler Equation for Consumption 45
 2.3.3 The Case of a Constant Elasticity of Intertemporal Substitution 46
 2.3.4 Firms, Technology, and the Optimal Output Path 48
Contents

2.3.5 General Equilibrium in the Two-Period Model 49
2.3.6 Diagrammatic Exposition of the Intertemporal Equilibrium 53
2.3.7 Implications for Growth and Business Cycle Theory 55

2.4 Consumption and Labor Supply in a One-Period Competitive Model 56
2.4.1 The Optimal Choice of Consumption and Labor Supply 56
2.4.2 Income and Substitution Effects on Labor Supply 58
2.4.3 The Frisch Elasticity of Labor Supply 60
2.4.4 The Production Function and the Optimal Decisions of Firms 61
2.4.5 General Equilibrium and the Determination of Output and Employment 61

2.5 Consumption and Labor Supply in a Two-Period Competitive Model 62
2.5.1 Optimal Consumption and Labor Supply in a Two-Period Model 63
2.5.2 Intertemporal Substitution in Consumption and Labor Supply 64
2.5.3 Optimal Production Decisions of Firms 65
2.5.4 General Equilibrium and the Determination of Output and Employment 66
2.5.5 Implications for Business Cycle Theory 68

2.6 Money, Prices, and Inflation in a Two-Period Competitive Model 69
2.6.1 The Representative Household and the Demand for Money 69
2.6.2 The Classical Dichotomy and the Neutrality of Money 71
2.6.3 The Two-Period Competitive Model and Classical Monetary Theory 74

2.7 Fiscal Policy in a Two-Period Competitive Model 74
2.7.1 Government Expenditure and Taxes in a One-Period Economy 74
2.7.2 Income Taxes and Labor Supply 76
2.7.3 Government Expenditure, Taxes, and Debt in a Two-Period Economy 77
2.7.4 Ricardian Equivalence between Tax and Debt Finance 78
2.7.5 Income Taxation and Aggregate Savings and Investment 81
2.7.6 Implications for Fiscal Policy and Government Debt 81

2.8 The Treatment of Time and the Intertemporal Approach 82
2.9 Conclusion 84

3 Savings, Investment, and Economic Growth 85
3.1 The Solow Growth Model 87
3.1.1 The Neoclassical Production Function 87
3.1.2 The Cobb-Douglas Production Function 89
3.1.3 Population Growth and Technical Progress 90
3.1.4 Savings, Capital Accumulation, and Economic Growth 90
3.1.5 The Balanced Growth Path and the Convergence Process 92
3.1.6 The Rate of Growth of Capital and Output 93
3.1.7 Significance of the Inada Conditions 95

3.2 Competitive Markets, the Real Interest Rate, and Real Wages 96
3.3 The Savings Rate and the Golden Rule 97
3.3.1 The Savings Rate and the Balanced Growth Path 98
3.3.2 The Savings Rate, the Golden Rule, and Dynamic Inefficiency 99
3.3.3 The Elasticity of Steady State Output with Respect to the Savings Rate 101
3.4 Total Factor Productivity and Population Growth 102
 3.4.1 Dynamic Effects of Total Factor Productivity in the Solow Model 103
 3.4.2 Dynamic Effects of Population Growth in the Solow Model 104
3.5 Speed of Convergence toward the Balanced Growth Path 104
3.6 The Process of Economic Growth and the Solow Model 106
 3.6.1 The Kaldor Stylized Facts of Economic Growth 107
 3.6.2 Differences in Per Capita Output and Income between Developed and Less Developed Economies 108
 3.6.3 Conditional Convergence 110
3.7 Convergence with a Cobb-Douglas Production Function 110
3.8 Dynamic Simulations of a Calibrated Solow Model 111
 3.8.1 The Solow Model in Discrete Time 112
 3.8.2 The Calibrated Solow Model 113
 3.8.3 Dynamic Simulations of the Model 114
3.9 Conclusion 117

4 The Representative Household Model of Optimal Growth 119
4.1 The Optimal Intertemporal Path of Consumption 121
4.2 The Ramsey Model of Economic Growth 124
 4.2.1 The Production Function 124
 4.2.2 The Utility Function of the Representative Household 125
 4.2.3 The Accumulation of Capital and the Optimality of the Decentralized Competitive Equilibrium 126
 4.2.4 Conditions for Utility Maximization by the Representative Household 128
 4.2.5 The Euler Equation for Consumption 129
 4.2.6 The Intertemporal Budget Constraint of the Representative Household 130
 4.2.7 The Transversality Condition with an Infinite Time Horizon 132
 4.2.8 The Consumption Function of the Representative Household with an Infinite Horizon 133
4.3 Dynamic Adjustment and the Balanced Growth Path 135
 4.3.1 Dynamic Adjustment toward the Balanced Growth Path 135
 4.3.2 The Balanced Growth Path and the Modified Golden Rule 138
 4.3.3 Effects of a Permanent Increase in the Pure Rate of Time Preference 139
 4.3.4 Effects of a Permanent Increase in Total Factor Productivity 141
 4.3.5 Effects of a Permanent Increase in the Rate of Growth of Population 142
4.4 Properties of the Adjustment Path and the Speed of Convergence 143
4.5 Dynamic Simulations of a Calibrated Ramsey Model 146
 4.5.1 The Ramsey Model in Discrete Time 146
 4.5.2 The Calibrated Ramsey Model 148
 4.5.3 Dynamic Simulations of the Model 149
4.6 Conclusion 152

5 Overlapping Generations Models of Growth 153
5.1 The Diamond Model 154
 5.1.1 Definitions 155
 5.1.2 The Production Function 155
Contents

5.1.3 The Intertemporal Utility Function of Households 155
5.1.4 Markets and the Behavior of Households 156
5.1.5 Capital Accumulation and the Dynamic Adjustment of the Economy 157
5.1.6 A Simplified Diamond Model with Logarithmic Preferences and Cobb-Douglas Technology 159
5.1.7 The Speed of Adjustment in the Simplified Diamond Model 163
5.1.8 Welfare Implications of the Diamond Model and the Possibility of Dynamic Inefficiency 164
5.1.9 Dynamic Simulations of a Calibrated Diamond Model 165
5.2 The Blanchard-Weil Model 169
5.2.1 Definitions 169
5.2.2 The Production Function 170
5.2.3 The Intertemporal Utility Function of Households and Household Consumption 170
5.2.4 Aggregation across Generations 172
5.2.5 The Model in Terms of Efficiency Units of Labor 173
5.2.6 The Balanced Growth Path and the Adjustment Path 173
5.3 Dynamic Simulations of a Calibrated Blanchard-Weil Model 177
5.3.1 The Blanchard-Weil Model in Discrete Time 178
5.3.2 Dynamic Simulations of the Model 178
5.4 Conclusion 182

6 Fiscal Policy and Economic Growth 183
6.1 The Government Budget Constraint 185
6.1.1 Government Deficits, Debt, and Solvency 185
6.2 Ricardian Equivalence and the Ramsey Model 187
6.2.1 Ricardian Equivalence between Government Debt and Taxes 187
6.2.2 Government Expenditure, Taxes, and Debt in the Ramsey Model 188
6.3 Dynamic Effects of Fiscal Policy in the Blanchard-Weil Model 191
6.3.1 The Blanchard-Weil Model with Government Expenditure and Debt 191
6.3.2 Government Debt, Taxes, and Redistribution across Generations 192
6.3.3 Dynamic Simulations of Fiscal Policy in a Calibrated Blanchard-Weil Model 194
6.4 Dynamic Effects of Distortionary Taxation 201
6.4.1 Distortionary and Nondistortionary Taxes 201
6.4.2 Dynamic Effects of Capital Income and Business Gross Profits Taxation 203
6.4.3 Dynamic Simulations of Increases in Capital Income and Business Gross Profits Taxation 205
6.5 Conclusion 206

7 Money, Inflation, and Economic Growth 209
7.1 Private Consumption and Money Demand in a Representative Household Model 211
7.1.1 Money in the Utility Function of Households 211
7.1.2 Nominal and Real Interest Rates and the Opportunity Cost of Real Money Balances 212
Contents

7.1 First-Order Conditions for an Optimum 212
7.1.3 First-Order Conditions for an Optimum 212
7.1.4 The Money Demand Function 213
7.1.5 Growth Rate of the Money Supply and Inflation 214
7.1.6 The Euler Equation for Consumption 215
7.2 Aggregate Capital Accumulation in a Ramsey Model with Money 216
7.2.1 The Production Function, the Real Interest Rate, and the Real Wage 216
7.2.2 The Inflation Tax and the Accumulation of Capital 216
7.3 Effects of the Growth Rate of the Money Supply in the Ramsey Monetary Model 218
7.3.1 The Balanced Growth Path in the Ramsey Model with Money 219
7.3.2 The Superneutrality of Money and Inflation 220
7.3.3 The Welfare Costs of Inflation in a Ramsey Model 221
7.4 Effects of Monetary Growth in an OLG Model 222
7.4.1 The Blanchard-Weil Model with Money 223
7.4.2 Real Effects of the Growth Rate of the Money Supply 224
7.4.3 A Dynamic Simulation of the Effects of a Rise in the Growth Rate of the Money Supply in a Calibrated Blanchard-Weil Model 227
7.5 Conclusion 229

8 Externalities, Human Capital, and Technical Progress 231
8.1 Externalities from Capital Accumulation and Economic Growth 232
8.1.1 Definitions 233
8.1.2 The Production Function 233
8.1.3 Externalities from the Accumulation of Capital 234
8.1.4 Determination of the Real Interest Rate and the Real Wage 237
8.1.5 The Savings Rate and the Endogenous Growth Rate 238
8.1.6 Externalities and Endogenous Growth in the Ramsey Model 239
8.1.7 The Suboptimality of the Competitive Equilibrium with Externalities Due to Capital Accumulation 241
8.1.8 Externalities and Endogenous Growth in the Blanchard-Weil Model 242
8.1.9 Fiscal Policy and Endogenous Growth 245
8.1.10 Convergence in Exogenous and Endogenous AK Growth Models 247
8.2 Investment in Human Capital and Economic Growth 248
8.2.1 The Extended Solow Model and the Share of Spending on Education and Training 249
8.2.2 The Balanced Growth Path in the Extended Solow Model 250
8.2.3 Endogenous Growth in the Extended Solow Model 251
8.2.4 The Jones Model of Human Capital Accumulation 252
8.2.5 The Lucas Model of Human Capital Accumulation and Endogenous Growth 253
8.2.6 A Detailed Analysis of the Lucas Model 254
8.3 Ideas, Innovations, and Technical Progress 258
8.3.1 Key Features of Ideas and Innovations 258
8.3.2 Key Elements of an Ideas-and-Innovations Growth Model 259
8.3.3 Endogenous Determination of the Rate of Technical Progress 261
8.3.4 The Balanced Growth Path with Endogenous Technical Progress 261
8.4 Unified Growth Theory and the Transition from Stagnation to Growth 262
Contents

8.5 Institutions and Long-Run Growth 263
8.6 The New Stylized Facts of Economic Growth 265
8.7 Conclusion 266

9 Dynamic Stochastic Models under Rational Expectations 269
 9.1 A Stochastic Expectational Model of a Competitive Market 271
 9.1.1 Absence of Uncertainty and Perfect Foresight 272
 9.1.2 Uncertainty and Adaptive Expectations 273
 9.1.3 The Rational Expectations Hypothesis 275
 9.2 Rational Expectations for Linear Autoregressive Processes 277
 9.3 First-Order Linear Expectational Models 279
 9.3.1 The Method of Repeated Substitutions 279
 9.3.2 The Method of Factorization 281
 9.3.3 The Method of Undetermined Coefficients 282
 9.3.4 Two Additional Economic Examples 282
 9.3.5 Alternative Assumptions about the Evolution of Exogenous Variables 284
 9.3.6 The Expectational Competitive Market Model Revisited 286
 9.4 Second-Order Linear Expectational Models 286
 9.4.1 The Method of Factorization 287
 9.4.2 The Method of Undetermined Coefficients 288
 9.4.3 An Economic Example of a Second-Order System 290
 9.5 Multivariate Linear Models with Rational Expectations 291
 9.5.1 The Blanchard-Kahn Method 291
 9.5.2 Other Solution Methods 293
 9.5.3 A Second-Order Example of the Blanchard-Kahn Method 293
 9.6 Rational Expectations and Learning 295
 9.7 Conclusion 295

10 Consumption and Portfolio Choice under Uncertainty 297
 10.1 Consumption and Portfolio Choice 298
 10.1.1 The Random Walk Model of Consumption 301
 10.1.2 The Consumption Capital Asset Pricing Model 302
 10.2 Full Analysis of Consumption and Portfolio Choice 303
 10.2.1 The Case of Logarithmic Preferences 303
 10.2.2 Quadratic Preferences and Certainty Equivalence 305
 10.2.3 The Permanent-Income Hypothesis with Quadratic Preferences 306
 10.2.4 The Consumption CAPM with Quadratic Preferences 307
 10.2.5 The Efficient Markets Hypothesis 308
 10.3 Precautionary Savings and Borrowing Constraints 310
 10.4 Conclusion 311

11 Investment and the Cost of Capital 313
 11.1 Optimal Investment with Convex Adjustment Costs 315
 11.1.1 The Choice of Optimal Investment 315
 11.1.2 The Case of Zero Adjustment Costs 317
Contents

11.1.3 The Investment Function with Convex Adjustment Costs 317
11.1.4 The Determinants of q 317
11.1.5 Dynamic Adjustment of q and the Capital Stock K 318
11.2 Optimal Investment under Uncertainty 320
11.2.1 The Value of a Firm under Uncertainty 321
11.2.2 The Lucas-Prescott Model of Investment under Uncertainty 323
11.2.3 Rational Expectations Equilibrium and Aggregate Investment in the Lucas-Prescott Model 325
11.3 Conclusion 327

12 Money, Interest, and Prices 329
12.1 The Functions of Money 331
12.2 The Supply of Money and Central Banks 332
12.2.1 Central Banks and Their Functions 332
12.2.2 Central Banks and the Money Supply 333
12.3 The Demand for Money 336
12.4 Nominal Interest Rates and Short-Run Equilibrium in the Money Market 339
12.5 The Long-Run Neutrality of Money 343
12.5.1 Monetary Growth, Inflation, and Nominal Interest Rates in the Long Run 345
12.5.2 The Welfare Cost of Inflation 346
12.5.3 The Long-Run Neutrality of Money and Monetary Reforms 346
12.6 Money and the Price Level in Dynamic General Equilibrium Models 347
12.6.1 The Samuelson OLG Model 347
12.6.2 Money in the Utility Function of a Representative Household 351
12.6.3 Cash in Advance in a Representative Household Model 353
12.6.4 Cash in Advance in an OLG Model 355
12.7 Nominal and Real Interest Rates and the Money Supply 357
12.7.1 Money in the Utility Function of a Representative Household 357
12.7.2 Cash in Advance in a Representative Household Model 359
12.7.3 Cash in Advance in an OLG Model 359
12.7.4 The Liquidity Effect in Representative Household Models 360
12.8 Interest Rate Pegging and Price Level Indeterminacy 361
12.8.1 Interest Rate Pegging and Price Level Indeterminacy in Representative Household Models 361
12.8.2 The Wicksell Solution to the Problem of Price Level Indeterminacy 362
12.8.3 The Fiscal Theory of the Price Level 363
12.8.4 The Pigou Effect and Price Level Determinacy in OLG Models 364
12.9 Money Growth, Seigniorage, and Inflation 364
12.9.1 Relations between Monetary Growth, Seigniorage, and Inflation 365
12.9.2 The Seigniorage Laffer Curve 367
12.9.3 The Demand for Seigniorage and Equilibrium with High Inflation 368
12.9.4 The Transition to Hyperinflation 368
12.9.5 How Can High Inflation and Hyperinflation be Tackled? 371
12.10 Conclusion 372
Contents

13 **The Stochastic Growth Model of Aggregate Fluctuations** 375
 13.1 The Stochastic Growth Model 376
 13.1.1 Extending the Ramsey Model to Account for Aggregate Fluctuations 377
 13.1.2 The Representative Firm 377
 13.1.3 The Representative Household 378
 13.1.4 Exogenous Population Growth, Efficiency of Labor, and Government Expenditure 378
 13.1.5 Labor Supply of the Representative Household 380
 13.1.6 Intertemporal Substitution in Labor Supply 381
 13.1.7 Uncertainty and the Behavior of the Representative Household 382
 13.2 A Simplified Version of the Stochastic Growth Model 383
 13.2.1 Fluctuations of Output in the Simplified Stochastic Growth Model 384
 13.2.2 The Simplified Stochastic Growth Model and the Evidence on Aggregate Fluctuations 385
 13.3 A Log-Linear Approximation to the General Stochastic Growth Model 386
 13.3.1 The Steady State 387
 13.3.2 Log-Linearizing the Model around the Steady State 388
 13.4 Solving the Log-Linear Stochastic Growth Model 390
 13.4.1 Aggregate Fluctuations around the Steady State 391
 13.4.2 A Dynamic Simulation of the Log-Linear Stochastic Growth Model 391
 13.5 Conclusion 393

14 **Perfectly Competitive Models with Flexible Prices** 395
 14.1 A Perfectly Competitive Model without Capital 396
 14.1.1 The Representative Household 396
 14.1.2 The Representative Firm 397
 14.1.3 General Equilibrium 398
 14.2 Monetary Factors in a Perfectly Competitive Model 400
 14.2.1 An Exogenous Path for the Money Supply 400
 14.2.2 An Exogenous Path for the Nominal Interest Rate 401
 14.2.3 An Inflation-Based Nominal Interest Rate Rule 401
 14.2.4 Optimal Monetary Policy 402
 14.3 Imperfect Information and the Nonneutrality of Money 403
 14.3.1 Competitive Equilibrium under Imperfect Information about the Price Level 403
 14.3.2 The Determination of Output and Employment 406
 14.3.3 The Real Effects of Monetary Shocks in a Rational Expectations Equilibrium 407
 14.3.4 Optimal Monetary Policy in the Lucas Model 410
 14.3.5 The New Classical Model and the Great Depression 410
 14.3.6 Models of Informational Frictions and Rational Inattention 411
 14.4 Conclusion 411
15 Keynesian Models and the Phillips Curve 413
15.1 The Original Keynesian Models 415
15.1.1 The Keynesian Cross 416
15.1.2 The IS-LM Model 419
15.1.3 The AD-AS Model 422
15.1.4 The Impact of Aggregate Demand Policies 424
15.2 The Samuelson Multiplier Accelerator Model 427
15.3 The Theory of Discretionary Monetary and Fiscal Policy 429
15.3.1 The Tinbergen-Theil Theory of Discretionary Aggregate Demand Policies 431
15.3.2 Monetary and Fiscal Policy with a Full Employment Target 431
15.3.3 Monetary and Fiscal Policy with a Full Employment Target and a Price Level Target 432
15.4 The Phillips Curve and Inflationary Expectations 435
15.4.1 The Phillips Curve and the Trade-off between Inflation and Unemployment 435
15.4.2 Instability of the Phillips Curve and Inflationary Expectations 437
15.5 The Natural Rate of Unemployment and Aggregate Demand Policies 439
15.5.1 The Path of Inflation and Unemployment under Adaptive Expectations 440
15.5.2 Rules versus Discretion in Aggregate Demand Policy 444
15.5.3 Inflation and Unemployment under Rational Expectations 446
15.6 Conclusion 447

16 A Model of Imperfect Competition and Staggered Pricing 449
16.1 An Imperfectly Competitive Model of Aggregate Fluctuations 451
16.1.1 The Representative Household 452
16.1.2 The Representative Firm and Optimal Pricing 454
16.1.3 Full Price Flexibility and the Natural Rate 455
16.1.4 Inefficiency of the Natural Rate 456
16.2 Staggered Price Adjustment and Aggregate Fluctuations 457
16.2.1 Optimal Pricing with Staggered Price Adjustment 459
16.2.2 Equilibrium in the Market for Goods and Services and the New Keynesian IS curve 461
16.2.3 Labor Market Equilibrium and the New Keynesian Phillips Curve 462
16.2.4 The Imperfectly Competitive Model with Staggered Pricing and the Taylor Rule 463
16.2.5 Real and Monetary Shocks and Aggregate Fluctuations 464
16.2.6 The Divine Coincidence and Optimal Monetary Policy in the New Keynesian Model with Staggered Pricing 468
16.2.7 A Dynamic Simulation of the Model 469
16.3 The Rotemberg Model of Convex Costs of Price Adjustment 470
16.4 Conclusion 473

17 A Model of Unemployment and Nominal Wage Contracts 475
17.1 Alternative Views of the Labor Market and Equilibrium Unemployment 477
17.2 Households and Optimal Consumption and Money Demand 478
Contents

17.3 Firms and Optimal Pricing and Production 481
17.4 Wage Setting and Employment in a Model with Insiders and Outsiders 483
 17.4.1 Wage Determination, Unemployment Persistence, and the Phillips Curve 485
 17.4.2 The Relation between Output and Unemployment Persistence 487
 17.4.3 The Phillips Curve in Terms of Deviations of Output from Its Natural Rate 488
17.5 The Implications of Staggered Pricing 489
 17.5.1 Optimal Pricing with Staggered Price Adjustment 490
 17.5.2 Inflation and Unit Labor Costs under Staggered Pricing 491
17.6 An Extended New Keynesian Phillips Curve: Combining Staggered Pricing with Periodic Nominal Wage Contracts 492
17.7 Inflation and Aggregate Fluctuations under a Taylor Rule 494
 17.7.1 New Neoclassical Synthesis IS-LM Functions 494
 17.7.2 The Natural and Equilibrium Real Interest Rate 494
 17.7.3 Equilibrium Fluctuations with Exogenous Preference and Productivity Shocks 495
 17.7.4 Does Staggered Pricing Matter for Inflation Persistence? 500
 17.7.5 Inflation Stabilization and the Divine Coincidence 501
17.8 The Optimal Taylor Rule 502
 17.8.1 Optimal Inflation Policy 502
17.9 A Dynamic Simulation of the Effects of Monetary and Real Shocks 504
17.10 Conclusion 506

18 Matching Frictions and Equilibrium Unemployment 509
18.1 The Matching Function 510
 18.1.1 The Probability of Filling a Vacancy and Labor Market Tightness 511
 18.1.2 The Probability of the Unemployed Finding a Job 511
18.2 Flows into and out of Employment, Equilibrium Unemployment, and the Beveridge Curve 512
18.3 Firms and the Creation of Vacancies 513
 18.3.1 The Present Value of Net Expected Profits from an Existing Job 514
 18.3.2 The Present Value of Net Expected Profits from a Vacancy and the Creation of Vacancies 515
 18.3.3 Free Entry and the Job Creation Condition 516
18.4 The Behavior of Unemployed Job Seekers 517
 18.4.1 The Permanent Income of an Unemployed Job Seeker 518
 18.4.2 The Permanent Income of an Employed Worker 518
 18.4.3 Comparing the Permanent Income of the Employed and the Unemployed 518
18.5 Wage Bargaining and the Wage Equation 519
18.6 Wage Determination and Equilibrium Unemployment 521
18.7 Determinants of Equilibrium Unemployment, Real Wages, and Labor Market Tightness 523
 18.7.1 An Increase in Labor Productivity 523
 18.7.2 An Increase in Unemployment Benefits 525
Contents

18.7.3 An Increase in the Real Interest Rate 527
18.7.4 An Increase in the Probability of Job Destruction 527
18.8 Dynamic Adjustment to the Steady State 527
18.8.1 The Dynamic Adjustment of Unemployment and Vacancies 530
18.8.2 Numerical Simulations of the Model 532
18.9 Matching Models and Nominal Rigidities 534
18.10 Conclusion 535

19 The Macroeconomic Implications of Financial Frictions 539
19.1 The Role of Finance and Financial Markets 539
19.1.1 Financial Frictions and Financial Intermediation 541
19.1.2 The Risks of Financial Intermediation, Leverage, and the External Finance Premium 542
19.1.3 The Links between the Financial Sector and Real Activity in the Presence of Frictions 543
19.2 Financial Frictions in a New Keynesian Model with Staggered Pricing 544
19.3 Financial Frictions in a Model with Unemployment Persistence and Nominal Wage Contracts 546
19.4 Conclusion 548

20 The Role of Monetary Policy 551
20.1 Rules versus Discretion in Monetary Policy 552
20.2 Rules, Discretion, and Credibility in a New Keynesian Model 554
20.2.1 The Social Welfare Loss from Inflation and Unemployment 555
20.2.2 Monetary Policy under Discretion: The Problem of Credibility 556
20.2.3 Monetary Policy under a Fixed Inflation Rule 559
20.2.4 Central Bank Constitutions 559
20.2.5 Reputation as a Solution to the Problem of Inflationary Bias 560
20.3 Optimal Monetary Policy in the Presence of Stochastic Shocks 562
20.4 The Mechanics of Monetary Policy 564
20.4.1 Financial Markets and Open Market Operations 565
20.4.2 The Term Structure of Interest Rates 566
20.5 Optimal Monetary Policy and the Taylor Rule 567
20.6 Monetary Policy Shocks and the Optimal Policy Rule 569
20.7 Monetary Policy, Financial Frictions, and the Zero Lower Bound on Interest Rates 571
20.7.1 The Liquidity Trap 572
20.7.2 Monetary Policy at the Zero Lower Bound 573
20.7.3 The Zero Lower Bound and Unconventional Monetary Policy 574
20.8 Conclusion 576

21 Fiscal Policy and Government Debt 579
21.1 Tax Smoothing and Government Debt Accumulation 581
21.1.1 The Barro Tax-Smoothing Model 581
21.1.2 Steady State Implications of Tax Smoothing 583
21.2 Keynesian Stabilization Policy, Automatic Stabilizers, and Fiscal Implications of the Zero Lower Bound 585
Contents

21.3 Optimal Dynamic Ramsey Taxation 586
21.4 Fiscal Policy and Politics 589
 21.4.1 Distributional Considerations and Politics 589
 21.4.2 Electoral Factors and Partisan Differences 590
21.5 The Burden of High Government Deficits and Debt 592
21.6 A Model of Government Debt Crises 593
 21.6.1 The Calvo Model 599
 21.6.2 Multiple Equilibria and Self-Fulfilling Prophecies 598
21.7 Conclusion 600

22 Bubbles, Multiple Equilibria, and Sunspots 601
22.1 Bubbles in Linear Rational Expectations Models 602
 22.1.1 Bubbles versus Fundamentals 603
 22.1.2 Deterministic versus Stochastic Bubbles 604
 22.1.3 Bubbles as Self-Fulfilling Prophecies in Inherently Unstable Models 605
 22.1.4 Higher-Order Linear Models 607
22.2 Bubbles in Models of Stock and Money Markets 607
 22.2.1 Stock Market Bubbles 607
 22.2.2 Money Market Bubbles, the Price Level, and Inflation 609
22.3 Ruling Out Unstable Bubbles 611
22.4 Indeterminacy, Self-Fulfilling Prophecies, and Sunspots 612
 22.4.1 The Samuelson OLG Model with Money, Revisited 614
 22.4.2 Other Models of Indeterminacy and Sunspots in Macroeconomics 619
22.5 Conclusion 620

23 The Interaction of Events and Ideas in Dynamic Macroeconomics 623
23.1 The Financial Crisis and Recent Developments in Dynamic Macroeconomics 624
23.2 The Interaction of Events and Ideas and the Role of Empirical Macroeconomics 626
23.3 Policy Evaluation and DSGE Models 628
23.4 Conclusion 629

Appendixes 631

A Variables, Functions, and Optimization 633
A.1 Models, Variables, and Functions 633
 A.1.1 Functions 634
 A.1.2 Derivatives and Partial Derivatives of Functions 635
 A.1.3 Maxima and Minima of Functions 642
A.2 Mathematical Optimization under Constraints 644
 A.2.1 Constrained Optimization in the Case of a Function of One Variable 644
 A.2.2 Optimal Consumption under an Income Constraint 645
 A.2.3 The Lagrange Method 647
A.3 Some Useful Functional Forms 651
 A.3.1 The Two-Factor CES Production Function and the Elasticity of Substitution 652
Contents

A.3.2 Special Cases of the CES Production Function 653
A.3.3 The CES Production Function and the Solow Model of Economic Growth 653
A.3.4 The CES Utility Function 655
A.3.5 Additively Separable Utility and the CEIS Utility Function 655

B Linear Models and Linear Algebra 659
B.1 Linear Models 659
B.2 Elements of Linear Algebra 660
 B.2.1 Matrix Addition, Subtraction, and Multiplication 661
 B.2.2 The Inverse of a Square Matrix 661
B.3 An Example with Two Endogenous Variables 663
 B.3.1 Cramer’s Rule 664
 B.3.2 The Augmented Matrix and Gauss-Jordan Elimination 664
 B.3.3 Diagonalization, Eigenvalues, and Eigenvectors 665
 B.3.4 Solving a System with Two Endogenous and Two Exogenous Variables 665

C Ordinary Differential Equations 667
C.1 Definitions 667
C.2 First-Order Linear Differential Equations 669
 C.2.1 Constant Coefficients 669
 C.2.2 Variable Right-Hand Side 670
 C.2.3 Variable Coefficients 671
 C.2.4 Homogeneous and Nonhomogeneous Differential Equations 671
 C.2.5 Convergence and Stability of First-Order Differential Equations 672
C.3 Second-Order Linear Differential Equations 673
 C.3.1 Homogeneous Equations with Constant Coefficients 673
 C.3.2 Nonhomogeneous Equations with Constant Coefficients 674
C.4 A Pair of First-Order Linear Differential Equations 675
 C.4.1 The Method of Substitution 675
 C.4.2 The Method of Eigenvalues 676
C.5 A System of \(n \) First-Order Linear Differential Equations 678
 C.5.1 Eigenvalues and Eigenvectors 679
 C.5.2 Solving the \(n \)th-Order System of Linear Differential Equations 679

D Difference Equations 683
D.1 Lag Operators and Difference Equations 683
D.2 First-Order Linear Difference Equations 686
D.3 Second-Order Linear Difference Equations 687
D.4 A Pair of First-Order Linear Difference Equations 689
D.5 A System of \(n \) First-Order Linear Difference Equations 690

E Methods of Intertemporal Optimization 693
E.1 The Form of Dynamic Optimization Problems 693
E.2 The Method of Optimal Control 694
E.3 The Optimal Control Method in Continuous Time 696
Contents

E.4 Dynamic Programming and the Bellman Equation 697
E.5 An Example Based on Optimal Savings in Continuous Time 700

F Random Variables and Stochastic Processes 703
F.1 Probability 703
F.2 Random Variables and Probability Distributions 704
 F.2.1 Discrete Probability Distributions 704
 F.2.2 Continuous Probability Distributions 705
 F.2.3 Mathematical Expectation, Variance, and Higher Moments 706
 F.2.4 Some Useful Probability Distributions 707
 F.2.5 Convergence of Random Variables 712
 F.2.6 The Law of Large Numbers 713
 F.2.7 The Central Limit Theorem 714
 F.2.8 Joint Probability Distributions 714
F.3 Stochastic Processes 715
F.4 Univariate Linear Stochastic Processes in Discrete Time 716
 F.4.1 The White Noise Process 717
 F.4.2 Moving Average Stochastic Processes 717
 F.4.3 Autoregressive Stochastic Processes 718
 F.4.4 Autoregressive Moving Average Stochastic Processes 720
F.5 Vector Stochastic Processes and Vector Autoregressions 720

References 723
Index 743
List of Figures and Table

Figures

1.1 Distribution of countries by per capita GNI, 2012 12
1.2 Long-run growth of (natural log) per capita GDP in the United Kingdom, the United States, and Japan 16
1.3 Long-run growth of (log) per capita GDP in the major European economies 17
1.4 Recessions (shaded areas) and (log) per capita GDP in the United States 19
1.5 Recessions (shaded areas) and (log) per capita GDP in the United Kingdom 20
1.6 Recessions (shaded areas) and the unemployment rate in the United States 21
1.7 Recessions (shaded areas) and the unemployment rate in the United Kingdom 22
1.8 Evolution of the price level in the United States 23
1.9 Evolution of the price level in the United Kingdom 24
1.10 Evolution of consumer price index (CPI) inflation in the United States 25
1.11 Evolution of CPI inflation in the United Kingdom 26
1.12 Money growth and inflation in 110 countries, 1960–1990 27
1.14 Evolution of US federal debt as a percentage of GDP 29
1.15 Evolution of UK public debt as a percentage of GDP 30
2.1 Equilibrium capital accumulation in a two-period economy 51
2.2 Intertemporal equilibrium in a two-period economy 53
2.3 Optimal consumption and leisure in a one-period economy 58
2.4 Income and substitution effects on labor supply 59
3.1 The production function in intensive form 89
3.2 Equilibrium in the Solow model 93
3.3 Determination of the growth rate 94
3.4 Implications of a rise in the savings rate 98
3.5 Impulse response function of a rise in the savings rate 99
3.6 Implications of a rise in total factor productivity 103
3.7 Implications of a rise in population growth 104
3.8 Convergence in the Solow model in discrete time 113
3.9 Impulse response functions of the Solow model following a permanent increase in the savings rate of 1% 115
List of Figures and Table

3.10 Impulse response functions of the Solow model following a permanent increase in total factor productivity of 1% 116
3.11 Impulse response functions of the Solow model following a permanent increase in the rate of population growth of 1% 117
4.1 The balanced growth path and dynamic adjustment in the Ramsey model 136
4.2 Short- and long-run effects of a permanent increase in the pure rate of time preference 140
4.3 Impulse response function of consumption and capital stock following a permanent increase at t_0 in the pure rate of time preference 141
4.4 Short- and long-run effects of a permanent increase in total factor productivity 142
4.5 Effects of a permanent increase in the population growth 143
4.6 Impulse response functions of the calibrated Ramsey model for a 1% permanent drop in the pure rate of time preference 150
4.7 Impulse response functions of the calibrated Ramsey model for a 1% permanent increase in total factor productivity 151
5.1 Multiple equilibria in the diamond model 158
5.2 Unique balanced growth path in the simplified diamond model 160
5.3 Effects of a permanent rise in the pure rate of time preference 161
5.4 Effects of a permanent rise in total factor productivity 162
5.5 Impulse response functions of the diamond model for a permanent rise in the pure rate of time preference of 1% 167
5.6 Impulse response functions of the Diamond model for a permanent rise in total factor productivity of 1% 168
5.7 The balanced growth path and the adjustment path for the Blanchard-Weil model 174
5.8 Short- and long-run effects of an increase in the pure rate of time preference in the Blanchard-Weil model 176
5.9 Short- and long-run effects of an increase in the rate of population growth in the Blanchard-Weil model 177
5.10 Impulse response functions for a 1% increase in the pure rate of time preference in the calibrated Blanchard-Weil model 179
5.11 Impulse response functions for a 1% increase in the population growth rate in the calibrated Blanchard-Weil model 180
5.12 Impulse response functions for a 1% increase in total factor productivity in the calibrated Blanchard-Weil model 181
6.1 Primary government expenditure in the Ramsey model 190
6.2 Primary government expenditure and debt in the Blanchard-Weil model 192
6.3 An increase in government debt in the Blanchard-Weil model 193
6.4 An increase in primary government expenditure in the Blanchard-Weil model 194
6.5 A tax-financed increase of primary government expenditure in the calibrated Blanchard-Weil Model 197
6.6 A debt-financed increase of primary government expenditure in the calibrated Blanchard-Weil Model 198
6.7 A debt-financed tax cut in the calibrated Blanchard-Weil model 199
6.8 Short- and long-run effects of capital income taxation in the Ramsey model 203
6.9 Dynamic effects of a 10% tax on interest income in the calibrated Ramsey model 204
List of Figures and Table

6.10 Dynamic effects of a 10% tax on business profits, before interest and depreciation, in the calibrated Ramsey model 205
7.1 The demand for real money balances and the welfare cost of inflation 222
7.2 The balanced growth path and the adjustment path in the Blanchard-Weil model with money 225
7.3 Dynamic effects of an increase in the growth rate of money supply in the Blanchard-Weil model with money 226
7.4 Dynamic simulation of an increase in the growth rate of the money supply in a calibrated Blanchard-Weil model with money 228
8.1 The aggregate production function for different values of β 235
8.2 Determination of the consumption-to-output ratio and the endogenous growth rate in the Blanchard-Weil model 244
8.3 Determination of private consumption and the growth rate with government expenditure and debt 246
8.4 The path of per capita output in exogenous and endogenous growth models 248
9.1 The cobweb model under adaptive expectations 274
11.1 Adjustment cost of investment 316
11.2 Determination of q and the capital stock K 319
11.3 Dynamic effects of a permanent rise in the real interest rate 320
11.4 Dynamic effects of a permanent rise in total factor productivity 321
12.1 The demand for money and the nominal interest rate 337
12.2 An increase in real income and the demand for money 338
12.3 Short-run equilibrium in the money market 339
12.4 Short-run effects of a rise in the money supply: the liquidity effect 340
12.5 Short-run effects of an exogenous rise in real income 341
12.6 Equilibrium in the money market with interest rate pegging 342
12.7 Money demand indeterminacy in the Samuelson OLG Model 350
12.8 The seigniorage Laffer curve 367
12.9 Equilibrium with high inflation 369
12.10 Equilibria with high inflation and the transition to hyperinflation 372
13.1 Dynamic simulation of the stochastic growth model following a 1% persistent shock to productivity 392
15.1 Exogenous investment and government expenditure: the Keynesian cross 418
15.2 Aggregate output and the nominal interest rate: the IS-LM model 420
15.3 Aggregate output and the price level: the AD-AS model 423
15.4 Aggregate demand disturbances and their effects on aggregate output and the price level 425
15.5 Aggregate supply disturbances and their effects on aggregate output and the price level 426
15.6 Convergence of real output for different values of the accelerator 430
15.7 The Phillips curve 436
15.8 The Phillips curve and the socially optimal combination of inflation and unemployment 437
15.9 Shifts of the Phillips curve due to inflationary expectations 438
15.10 Continuous shifts of the Phillips curve due to rising inflationary expectations 442
<table>
<thead>
<tr>
<th>Figure/Section Number</th>
<th>Title of Figures/Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.11</td>
<td>Determination of steady state inflation and unemployment under discretion and commitment to an inflation rule</td>
</tr>
<tr>
<td>16.1</td>
<td>Impulse response functions of the staggered pricing model following a contractionary monetary shock</td>
</tr>
<tr>
<td>16.2</td>
<td>Impulse response functions of the staggered pricing model following a positive productivity shock</td>
</tr>
<tr>
<td>16.3</td>
<td>Impulse response functions following a 1% unanticipated temporary positive shock to the nominal interest rate</td>
</tr>
<tr>
<td>16.4</td>
<td>Impulse response functions following a 1% unanticipated persistent positive shock to productivity</td>
</tr>
<tr>
<td>18.1</td>
<td>The beveridge curve and equilibrium unemployment</td>
</tr>
<tr>
<td>18.2</td>
<td>The job creation condition</td>
</tr>
<tr>
<td>18.3</td>
<td>The determination of real wages and labor market tightness</td>
</tr>
<tr>
<td>18.4</td>
<td>Labor productivity and equilibrium unemployment</td>
</tr>
<tr>
<td>18.5</td>
<td>Unemployment benefits and equilibrium unemployment</td>
</tr>
<tr>
<td>18.6</td>
<td>The real interest rate and equilibrium unemployment</td>
</tr>
<tr>
<td>18.7</td>
<td>The probability of job destruction and equilibrium unemployment</td>
</tr>
<tr>
<td>18.8</td>
<td>Dynamic adjustment of unemployment and vacancies to an increase in the job destruction rate</td>
</tr>
<tr>
<td>20.1</td>
<td>Inflation and lack of credibility under a discretionary policy</td>
</tr>
<tr>
<td>20.2</td>
<td>The liquidity trap</td>
</tr>
<tr>
<td>21.1</td>
<td>Expected default and the debt holding condition</td>
</tr>
<tr>
<td>21.2</td>
<td>The actual probability of default and the cumulative distribution of the primary surplus</td>
</tr>
<tr>
<td>21.3</td>
<td>Determination of the interest factor and the probability of default for a low rate of return of the safe asset</td>
</tr>
<tr>
<td>21.4</td>
<td>Determination of the interest factor and the probability of default for a high rate of return of the safe asset</td>
</tr>
<tr>
<td>22.1</td>
<td>Deterministic bubbles</td>
</tr>
<tr>
<td>22.2</td>
<td>A stochastically bursting bubble versus a deterministic bubble</td>
</tr>
<tr>
<td>22.3</td>
<td>Equilibrium consumption in the Samuelson OLG model</td>
</tr>
<tr>
<td>22.4</td>
<td>Saddle point equilibrium money balances in the Samuelson OLG model</td>
</tr>
<tr>
<td>22.5</td>
<td>Multiple convergence paths for money balances in the Samuelson OLG model</td>
</tr>
<tr>
<td>22.6</td>
<td>Multiple equilibria, sunspots, and cycles in the Samuelson OLG model</td>
</tr>
<tr>
<td>A.1</td>
<td>Utility as a function of consumption</td>
</tr>
<tr>
<td>A.2</td>
<td>Output as a function of capital and labor</td>
</tr>
<tr>
<td>A.3</td>
<td>Isoquants: capital labor combinations that produce given amounts of output</td>
</tr>
<tr>
<td>A.4</td>
<td>Output as a function of the capital stock for a given level of employment of labor</td>
</tr>
<tr>
<td>A.5</td>
<td>Utility and marginal utility: the derivative of the utility function</td>
</tr>
<tr>
<td>A.6</td>
<td>Stationary points: maxima, minima, and points of inflection</td>
</tr>
<tr>
<td>A.7</td>
<td>Maximization with a binding and a nonbinding constraint</td>
</tr>
<tr>
<td>A.8</td>
<td>Maximization of consumer utility subject to an income constraint</td>
</tr>
</tbody>
</table>
List of Figures and Table

A.9 Optimal choice of a consumption bundle 651
F.1 The uniform distribution 709
F.2 The CDF of the continuous uniform distribution 710
F.3 The normal distribution 711
F.4 The CDF of the standard normal distribution 712

Table

1.1 Per capita GDP and average annual growth rates over time 15
Preface

Macroeconomics deals with the structure, behavior and performance of economies in their entirety. It concentrates on aggregate variables, such as output and income (gross domestic product), unemployment rates, price indices, and inflation. It studies the structure and interrelations among economy-wide markets for output, labor, capital, and financial instruments and their implications for aggregate economic performance.

Macroeconomics mainly focuses on the determinants of long-run economic growth in living standards and the causes and implications of short-term fluctuations in economic aggregates.

This book is an advanced treatment of modern macroeconomics using a sequence of dynamic general equilibrium models, which are based on intertemporal optimization on the part of economic agents, such as households, firms, and the government. The book also analyzes and discusses the role of monetary and fiscal policy in the context of such dynamic models.

The intertemporal approach, based on the use of dynamic general equilibrium models, is currently the dominant approach to macroeconomics. This approach is adopted in this text. The book is addressed to advanced undergraduate as well as first-year graduate students of economics. It is also suitable for trained economists who wish to deepen and broaden their grasp of dynamic macroeconomics. It highlights the potential but also some limitations of the modern intertemporal approach.

Chapter 1 serves as an introduction and overview, providing a brief survey of the evolution of macroeconomics, as well as presenting the key facts about long-run economic growth and aggregate fluctuations. Accounting for these key facts is the main objective of the dynamic macroeconomic models that are analyzed in the rest of the book.

Chapter 2 introduces the main elements of the intertemporal approach to macroeconomics by means of two-period competitive general equilibrium models. Two-period models are the simplest possible intertemporal models. They help highlight both the strengths and the weaknesses of modern intertemporal macroeconomics without the need for advanced mathematical methods.
These two-period models are used to address issues such as savings and capital accumulation, intertemporal substitution in consumption and labor supply, the distinction between real and nominal variables, the classical dichotomy and the neutrality of money, monetary growth and inflation, Ricardian equivalence between debt and tax finance of public expenditure, and the effects of distortionary taxation. These are themes that recur again and again in macroeconomics. The two-period models of chapter 2 thus set the stage for the more advanced infinite-horizon dynamic and dynamic stochastic models that are the workhorses of modern theories of economic growth and aggregate fluctuations.

The remainder of the book is divided into 21 chapters, presenting models of economic growth, aggregate fluctuations, and monetary and fiscal policy.

The process of long-run economic growth is analyzed in chapters 3–8.

Chapter 3 introduces and discusses the basic neoclassical model of savings, investment, and economic growth. This model was developed by Solow [1956] and Swan [1956]. It is based on a neoclassical production function and an exogenous savings and investment rate. The model highlights the role of physical capital accumulation, technical progress, and population growth for the process of economic growth.

Chapter 4 presents and analyzes the model of the representative household. In this model, which was first put forward by Ramsey [1928] and later developed by Cass [1965] and Koopmans [1965], savings and investment are chosen optimally by a representative household with an infinite time horizon. The household is assumed to be able to borrow and lend freely in competitive capital markets.

Overlapping generations models of growth are presented in chapter 5. These are models in which different generations of households coexist. Younger households enter the economy with human capital as their only asset, because no intergenerational transfers of capital or financial assets take place. Overlapping generations models were first developed by Allais [1947], Samuelson [1958], and Diamond [1965], and later by Blanchard [1985] and Weil [1989].

Chapter 6 discusses models that highlight the intertemporal effects of fiscal policy, focusing on the effects of government consumption and the ways it is financed, such as through taxation and government debt.

Chapter 7 discusses models that focus on the intertemporal effects of the money supply and monetary growth. Monetary models help determine the evolution not only of real variables but also of nominal variables, expressed in money terms, such as the price level, nominal wages, inflation, and nominal interest rates.

More general growth models based on externalities, human capital accumulation, and endogenous technical change are discussed in chapter 8.

Chapters 9–12 introduce decision making under uncertainty in the context of dynamic stochastic models. These chapters highlight the role of expectations in macroeconomics. Chapter 9 introduces dynamic stochastic models under rational expectations, while chapters 10 and 11 focus on models of the microeconomic foundations of consumption under
uncertainty and investment and the cost of capital. Chapter 12 is an extended treatment of the role of money, alternative general equilibrium models with money, and the relation between the need for seigniorage and inflation.

Chapters 13–19 present and analyze alternative dynamic stochastic general equilibrium models of aggregate fluctuations. Such models are the basis of the new neoclassical synthesis, which is the dominant modern approach to the study of aggregate fluctuations.

Chapter 13 presents the stochastic growth model of aggregate fluctuations, and chapter 14 analyzes perfectly competitive models without capital. These are benchmark new classical models, based on competitive markets and perfectly flexible wages and prices.

Chapter 15 introduces and discusses the basic Keynesian model and the Phillips curve. Two new Keynesian dynamic stochastic models of aggregate fluctuations are then presented. Keynesian models assume distortions in the adjustment of wages and prices. Chapter 16 presents an imperfectly competitive model with staggered pricing; chapter 17 introduces an alternative new Keynesian model with periodic wage setting by labor market insiders. Chapter 18 focuses on labor market frictions and analyzes a matching model of the determination of the so-called natural rate of unemployment. Chapter 19 focuses on financial frictions and their macroeconomic implications.

Chapters 20 and 21 delve deeper into the roles of monetary and fiscal policy. The role and effectiveness of monetary policy is analyzed in chapter 20, whereas fiscal policy and the determination and implications of government debt are analyzed in chapter 21.

Chapter 22 focuses on dynamic stochastic models with bubbles, multiple macroeconomic equilibria, self-fulfilling prophecies, and sunspots. Such models allow for a different view of aggregate fluctuations than the standard dynamic stochastic general equilibrium models of the new neoclassical synthesis examined in chapters 13–19, which are usually based on a unique equilibrium.

Finally, chapter 23 discusses the current state of macroeconomics, highlighting the role of theoretical models and their interactions with empirical macroeconomics. It also discusses the impact of the financial crisis and the Great Recession of 2008–2009. The incorporation of labor market and financial frictions into dynamic stochastic general equilibrium models seems to be the main direction in which macroeconomics has been heading ever since.

Dynamic Macroeconomics is predominantly based on the intertemporal approach. The book presents and analyzes dynamic and dynamic stochastic general equilibrium models, in which households and firms (but also the government and the central bank) make their decisions taking full account of their intertemporal effects. The dynamic element of time, the element of uncertainty about stochastic shocks, and the techniques of intertemporal optimization permeate modern macroeconomics and are central to the analysis of the models in this book.

There are two exceptions to this rule about relying on models of intertemporal optimization. Chapter 3 contains an extensive discussion of the Solow model, which, from the perspective of the intertemporal approach, is an ad hoc general equilibrium model. In the
Solow model, the savings rate is assumed exogenous and is not derived from intertemporal optimization on the part of households. However, this model is pivotal for the theory of economic growth and provides the foundation for examining the implications of optimizing growth models, such as the representative household and overlapping generations model. The Solow model also provides the link to models with externalities, human capital accumulation, and endogenous growth. It is thus important that the Solow model and the role of savings and investment are fully analyzed and understood early on.

The second exception is chapter 15, which contains a full presentation and discussion of traditional Keynesian models, such as the Keynesian cross, the IS-LM model, the AD-AS model, and models of the Phillips curve. First sketched in the General Theory of Keynes [1936] and later developed by Hicks [1937], Modigliani [1944], Samuelson [1948], Hansen [1949], Patinkin [1956], and others, these models are the basis on which macroeconomics was originally developed as a separate subdiscipline of economics. They led to the original neoclassical synthesis and are the foundation of the new neoclassical synthesis and the distinction between the new classical and the new Keynesian approaches to intertemporal macroeconomics. It is thus crucial that the properties, the strengths, and the weaknesses of these traditional Keynesian models are fully understood.

Even though they belong to previous generations of macroeconomic models, the Solow model and the traditional Keynesian models serve as the basis through which the student of modern macroeconomics can appreciate the strengths, weaknesses, and policy implications of the intertemporal approach. Unlike the traditional approach to macroeconomics, the intertemporal approach is based on dynamic and dynamic stochastic models derived from explicit microeconomic foundations.

In the dynamic general equilibrium growth models that are discussed in this book, the optimal and mutually compatible decisions of households, firms, and the government (or central bank) help determine key macroeconomic aggregates. These aggregates include output and income, employment, consumption, investment, government expenditure and taxes, the stock of physical and human capital, the stock of government debt, the price level, real and nominal wages, real and nominal interest rates, and inflation. The performance of the economy depends on which distortions are present and how they are addressed by government policy.

In the models of aggregate fluctuations, such as the new classical, and the new Keynesian dynamic stochastic general equilibrium models presented here, fluctuations in aggregate real and nominal variables are the result of the individually optimal and mutually compatible reactions of households, firms, and the government and central bank to stochastic real or monetary disturbances.

Several elements differentiate this book from other advanced texts on macroeconomics. First, many of the concepts and the characteristics of intertemporal macroeconomics are introduced at an early stage (chapter 2) in the context of two-period intertemporal general equilibrium models, which can be analyzed with minimal mathematical superstructure. This

-1
0
+1
allows the student to gain a fundamental understanding of the issues at stake early on and relatively easily.

Second, the book focuses on a full analysis of a limited number of key intertemporal models. For example, in growth theory, the focus is on the representative household and overlapping generations models, variants of which are combined with different assumptions about technology, externalities from capital accumulation, human capital accumulation, and endogenous technical progress. In the theory of aggregate fluctuations, the focus is on essentially four models. They are the stochastic growth model and three short-run models of aggregate fluctuations: a new classical model without capital, an imperfectly competitive new Keynesian model with staggered pricing and an alternative new Keynesian model with periodic wage contracts. Such models form the basis of what has been termed the new neoclassical synthesis and are analyzed fully.

A third distinguishing element of the approach adopted in this book is that the models are stripped down to essentials, so that they can be fully solved and analyzed. Thus, most of the models used can be reduced to second-order dynamic systems whose solutions can be fully characterized, either algebraically or with the help of simple two-dimensional phase diagrams. This approach allows students to focus on the dynamic properties of the models and gain a deep understanding of the economics of these dynamic processes. A variety of exercises scattered throughout the text encourages students to try their hand at solving versions of the main dynamic models that define modern macroeconomics.

But because dynamic simulation techniques are an important element of modern dynamic macroeconomics and policy analysis (especially for higher-dimensional models), the dynamic models used in the book are also simulated numerically, and their impulse response functions are plotted and discussed. This is something intended to help students of this text gain a better grasp of the dynamic properties of the models themselves. In addition, such simulations allow for an assessment of the quantitative significance of the various effects highlighted in the theoretical models. They help determine which effects are quantitatively significant and which are not. Finally, the simulations demonstrate to students of this text how to set up and simulate dynamic and dynamic stochastic general equilibrium macroeconomic models, something that should familiarize them with the techniques and prepare them to analyze higher-dimensional, more complicated, and more realistic models.¹

Modern macroeconomics is not based on a single generally accepted and all-encompassing model. For this reason, this book is eclectic. It treats macroeconomics as applied and policy-oriented general equilibrium analysis, based on various alternative, relatively simple aggregate dynamic or dynamic stochastic models. We examine a plurality of

¹ The dynamic simulations of the various models are carried out through the use of the software platform Dynare (dynare.org), in conjunction with the programming language Matlab (mathworks.com). The Dynare programs used for carrying out the simulations are available through the dedicated website for the book (dynamic macroeconomics.com).
models, each of which is suitable for investigating specific issues and addressing specific questions, but may be unsuitable for other issues or questions. The book highlights both the potential strengths as well as the limitations of alternative models.2

However, some key unifying principles in the models are adopted. The most important of these principles is the assumption that economic agents base their decisions on intertemporal optimization of some well-defined objective function under appropriate constraints. Thus, for the most part, we examine dynamic general equilibrium models with explicit intertemporal microeconomic foundations. Where there are theoretical disagreements, alternative approaches are juxtaposed, their pros and cons are analyzed, and their compatibility with the empirical evidence is also briefly discussed.

Key facts about long-run economic growth and aggregate fluctuations are presented in chapter 1. Additional facts are also presented as we move to the particular models in the relevant chapters and they relate to the specific issues these models seek to explain. The discussion of these facts facilitates the process of evaluating the relevance and usefulness of the theoretical models in the rest of this book.

However, note that the rigorous and full empirical evaluation and testing of alternative theories and models is beyond the scope of this book. The present text, although concerned with models that account for the key stylized facts about macroeconomic phenomena, is a text on macroeconomic theory, not empirical or applied macroeconomics. Texts that focus on empirical macroeconomics and macroeconometrics could complement the present text for empirically inclined students and economists, and should indeed be consulted, as macroeconomics ultimately relies on the interactions between theory and evidence.3

The book assumes introductory knowledge of economic theory and mathematics for economists. The main mathematical techniques needed to analyze optimizing dynamic macroeconomic models are fully reviewed in the appendixes. These appendixes assume some basic prior knowledge of the material contained in mathematical textbooks for economists but are for the most part self-contained. They discuss some useful functional forms for the production and utility functions used in macroeconomics, derivatives and partial derivatives, optimization under constraints and the Lagrange method, linear algebra and the solution of linear models, solution methods for linear differential and difference equations, dynamic optimization techniques, and random variables and stochastic processes.

The book has emerged from my lectures over more than 30 years at Birkbeck College, University of London, and the Athens University of Economics and Business, both at

2 As noted by Keynes [1938], in a letter to Roy Harrod, “economics is a science of thinking in terms of models, joined to the art of choosing models which are relevant to the contemporary world.” See Rodrik [2015] for a similarly eclectic approach to the role of models in economics in general, and the rules for setting up models and evaluating them.

3 Good examples of such texts are Favero [2001], Canova [2007], DeJong and Chetan [2011], and Herbst and Schorfheide [2015].
advanced undergraduate and postgraduate levels. The past 50 years have been a period of impressive progress for dynamic macroeconomics, which has transformed the discipline. The book traces this evolution and the current trends in macroeconomics, and is thus suitable for advanced undergraduates, professional economists, and graduate students in the first year of degrees leading to an MSc or a PhD in economics or related subjects, such as finance.

I thank a number of people who have contributed to this book, both directly and indirectly. First and foremost, I thank my PhD advisors during 1979–1981 at the London School of Economics: George Akerlof, Steve Nickell, and Chris Pissarides. They had a great positive influence on my training as a macroeconomist and on my attitude as an academic economist, which has stood me well over the years. I owe them a lot.

More recently, my biggest debt is to successive generations of students, and especially the students in the master’s and PhD programs in economics at the Athens University of Economics and Business over the past decade. They have suffered through successive versions of my lecture notes between 2009 and 2016, provided useful feedback, and helped improve the original notes.

The Fletcher School at Tufts University was an ideal academic environment that allowed me to complete and improve the manuscript between 2016 and 2018.

Various colleagues have contributed through comments and discussions that have helped bring about improvements in the book. I particularly thank Marios Angeletos, Yannis Ioannides, Michael Klein, Tryphon Kollintzas, Athanasios Orphanides, Apostolis Philippopoulos, and Plutarchos Sakellaris. Olivier Blanchard reviewed an early version of the full manuscript and provided helpful comments and much needed encouragement.

I thank Emily Taber, the MIT Press economics acquisitions editor, for putting this manuscript through a very efficient editorial process. I also acknowledge the very helpful comments and suggestions of eight anonymous reviewers in the prepublication process. These reviews have been extremely useful and have led to a much improved manuscript. The copy editor, Cyd Westmoreland, and the production editor, Erin Davis, have also helped improve the final manuscript, through a very efficient editing process.

Throughout the long years of writing, revising, and rewriting, my wife Dika has provided much needed support and encouragement, as she has done through the many years of our common life. I cannot thank her enough.

I remain solely responsible for all remaining errors.

George Alogoskoufis
Fletcher School, Tufts University; and Athens University of Economics and Business